Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]
Некоторые типы усилительных каскадов
2.15. Двухтактные выходные каскадыВ этой главе уже было отмечено, что если в эмиттерном повторителе используется транзистор n-р-n-типа, то ток не может втекать в схему, если же используется транзистор р-n-р-типа, то ток не может вытекать. В результате повторитель с несимметричным выходом, в котором используются расщепленные источники питания, а ток покоя имеет большую величину, при двуполярном сигнале может работать только на заземленную нагрузку (такие схемы называют иногда усилителями класса А). Ток покоя должен быть по крайней мере таким же большим, как максимальный выходной ток при пиковых значениях сигнала, в результате схема в состоянии покоя рассеивает большую мощность. Например, на рис. 2.54 показана схема повторителя, который работает на нагрузку с сопротивлением 8 Ом и мощностью до 10 Вт.
Рис. 2.54. Усилитель громкоговорителя на 10 Вт, построенный на основе эмиттерного повторителя с однополюсным выходом, рассеивает мощность 165 Вт!
Повторитель T1 на транзисторе р-n-р-типа служит для того, чтобы снизить требования к мощности входного сигнала схемы и скомпенсировать напряжение смещения UБЭ в транзисторе Т2 (напряжение 0 В на входе дает 0 В на выходе). Конечно, для простоты Т1 можно было бы опустить. Большой источник тока, используемый в качестве нагрузки в цепи эмиттера Т1, служит для того, чтобы обеспечить достаточный базовый ток для Т2 при пиковом значении сигнала. Резистор в цепи эмиттера не используют потому, что он должен был бы иметь слишком малое сопротивление (50 Ом или меньше), для того чтобы при пиковом значении сигнала можно было гарантировать базовый ток Т2, равный по крайней мере 50 мА; при этом ток нагрузки был бы максимальным, а падение напряжения на резисторе минимальным; результирующий ток покоя T1 оказался бы чрезмерно большим.
Выходной сигнал схемы может изменяться в диапазоне ±15 В (пиковые значения) и отдавать в нагрузку требуемую мощность (эффективное напряжение 9 В на сопротивлении 8 Ом). Однако в отсутствие сигнала, выходной транзистор рассеивает мощность 55 Вт, а эмиттерный резистор — еще 110 Вт. Для усилителей такого типа, принадлежащих к классу А (транзистор всегда в открытом состоянии), характерно, что мощность, рассеиваемая в состоянии покоя, во много раз превышает максимальную выходную мощность; схема оставляет желать лучшего, особенно если речь идет о системах, связанных с большим выделением мощности.
На рис. 2.55 показана двухтактная схема повторителя, которая работает аналогичным образом.
Рис. 2.55. Двухтактная схема эмиттерного повторителя.
Транзистор Τ1 открыт при положительных значениях сигнала, а транзистор Т2 — при отрицательных. При нулевом входном напряжении коллекторного тока нет и мощность не рассеивается. При выходной мощности 10 Вт каждый транзистор рассеивает мощность менее 10 Вт.
Переходные искажения в двухтактных каскадах. Предыдущей схеме присуще следующее свойство: выходной сигнал отслеживает входной сигнал с разницей на величину падения напряжения UБЭ; на положительном интервале входного сигнала выходное напряжение примерно на 0,6 В меньше, чем входное, на отрицательном интервале наоборот. Для синусоидального входного сигнала выходной сигнал будет таким, как показано на рис. 2.56.
Рис. 2.56. Переходные искажения в двухтактном повторителе.
На языке радиотехники такое искажение сигнала называется переходным искажением. Лучше всего немного сместить двухтактный каскад в состояние проводимости, как показано на рис. 2.57 (еще один метод устранения переходного искажения связан с использованием обратной связи, хотя он имеет некоторые недостатки).
Рис. 2.57. Устранение переходных искажений за счет смещения двухтактного повторителя.
Резисторы смещения R переводят диоды в состояние проводимости, благодаря этому напряжение на базе Τ1 превышает входное напряжение на величину падения напряжения на диоде, а напряжение на базе Т2 на величину падения напряжения на диоде меньше, чем входное напряжение. Теперь, когда входной сигнал проходит через нуль, проводящим транзистором вместо Т2 становится Τ1; один из выходных транзисторов всегда открыт.
Резистор R выбран так, чтобы обеспечивался необходимый базовый ток в выходных транзисторах при пиковых значениях выходного сигнала. Например, если используются источники питания ±20 В, а нагрузка имеет сопротивление 8 Ом и мощность 10 Вт для синусоидального сигнала, пиковое базовое напряжение составляет около 13,5 В, а пиковый ток нагрузки 1,6 А. Допустим, что коэффициент β транзистора равен 50 (мощные транзисторы обычно имеют меньший коэффициент усиления по току, чем малосигнальные транзисторы), тогда для получения базового тока, равного 32 мА, потребуются базовые резисторы с сопротивлением 220 Ом (при пиковом значении сигнала ток базы будет определяться напряжением 6,5 В, равным разности 13,5 В и напряжения источника питания UKK).
Температурная стабильность двухтактных усилителей класса В. Рассмотренный выше усилитель (иногда такие схемы называют усилителями класса В, при этом имеют в виду, что каждый транзистор находится в открытом состоянии только в течение половины периода входного сигнала) имеет один серьезный недостаток: он не обладает температурной стабильностью. По мере того как выходные транзисторы нагреваются (когда приложен входной сигнал, они нагреваются, так как рассеивают мощность), напряжение UБЭ начинает убывать, а коллекторный ток покоя — возрастать. Выделяющееся при этом дополнительное тепло усугубляет положение и повышает вероятность того, что в схеме разовьется неконтролируемая тепловая положительная обратная связь (эта вероятность зависит от ряда факторов: насколько велик радиатор для отвода тепла, совпадает ли температура диодов с температурой транзисторов и др.). Даже если этого не произойдет и схема не выйдет из строя, необходимо обеспечить более надежное управление ее работой; обычно прибегают к схеме, показанной на рис. 2.58.
Рис. 2.58. Увеличение температурной стабильности двухтактного повторителя за счет включения в схему небольших эмиттерных резисторов.
Для примера здесь показан случай, когда входной сигнал снимается с коллектора предшествующего каскада; резистор выполняет двойную функцию: он является коллекторным резистором транзистора Т1 и формирует ток для смещения диодов и смещающего резистора в основной двухтактной схеме. Резисторы R3 и R4 обычно имеют сопротивление несколько ом или ниже; они «амортизируют» критическое смещение тока покоя: напряжение между базами выходных транзисторов должно быть немного больше, чем удвоенное падение напряжения на диоде; дополнительное падение напряжения обеспечивает регулируемый резистор смещения R2 (его часто заменяют еще одним диодом).
Падение напряжения на резисторах R3 и R4 составляет несколько десятых долей вольта, благодаря этому температурное изменение напряжения UБЭ не приводит к быстрому возрастанию тока (чем больше падение напряжения на R3 и R4, тем менее чувствителен к температуре ток) и схема работает стабильно. Стабильность увеличивается, если диоды имеют тепловой контакт с выходными транзисторами (или их радиаторами).
Температурную стабильность схемы можно оценить, если вспомнить, что падение напряжения между базой и эмиттером уменьшается примерно на 2,1 мВ при увеличении температуры на каждый градус (°С), а коллекторный ток увеличивается в 10 раз при каждом увеличении напряжения между базой и эмиттером на 60 мВ. Например, если резистор R2 заменить диодом, то напряжение между базами транзисторов Т2 и Т3 будет равно утроенному падению напряжения на диоде, а на последовательное соединение резисторов R3 и R4 будет приходиться падение напряжения, равное падению напряжения на диоде. (Следовательно, резисторы R3 и R4 должны быть подобраны таким образом, чтобы обеспечивался нужный ток покоя, например 50 мА для усилителя звуковых частот.) Самым худшим для этой схемы является случай, когда смещающие диоды не имеют теплового контакта с выходными транзисторами.